Time–space trade-offs for triangulations and Voronoi diagrams

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Space Trade-offs for Triangulations and Voronoi Diagrams

Let S be a planar n-point set. A triangulation for S is a maximal plane straight-line graph with vertex set S. The Voronoi diagram for S is the subdivision of the plane into cells such that each cell has the same nearest neighbors in S. Classically, both structures can be computed in O(n logn) time and O(n) space. We study the situation when the available workspace is limited: given a parameter...

متن کامل

Time-space Trade-offs for Voronoi Diagrams

Let S be a planar n-point set. Classically, one can find the Voronoi diagram VD(S) for S in O(n log n) time and O(n) space. We study the situation when the available workspace is limited: for s ∈ {1, . . . , n}, an s-workspace algorithm has read-only access to an input array with the points from S in arbitrary order, and it may use only O(s) additional words of Θ(log n) bits for reading and wri...

متن کامل

Time-Space Trade-o s for Triangulations and Voronoi Diagrams

Let S be a planar n-point set. A triangulation for S is a maximal plane straight-line graph with vertex set S. The Voronoi diagram for S is the subdivision of the plane into cells such that each cell has the same nearest neighbors in S. Classically, both structures can be computed in O(n logn) time and O(n) space. We study the situation when the available workspace is limited: given a parameter...

متن کامل

Improved Time-Space Trade-Offs for Computing Voronoi Diagrams

Let P be a planar n-point set in general position. For k ∈ {1, . . . , n − 1}, the Voronoi diagram of order k is obtained by subdividing the plane into regions such that points in the same cell have the same set of nearest k neighbors in P . The (nearest point) Voronoi diagram (NVD) and the farthest point Voronoi diagram (FVD) are the particular cases of k = 1 and k = n − 1, respectively. It is...

متن کامل

Voronoi Diagrams and Delaunay Triangulations

The Voronoi diagram of a set of sites partitions space into regions one per site the region for a site s consists of all points closer to s than to any other site The dual of the Voronoi diagram the Delaunay triangulation is the unique triangulation so that the circumsphere of every triangle contains no sites in its interior Voronoi diagrams and Delaunay triangulations have been rediscovered or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 2018

ISSN: 0925-7721

DOI: 10.1016/j.comgeo.2017.01.001